.. include:: vars.rst ============================= Support for GPUs in OpenStack ============================= NVIDIA Virtual GPU ################## BIOS configuration ------------------ Intel ^^^^^ * Enable `VT-x` in the BIOS for virtualisation support. * Enable `VT-d` in the BIOS for IOMMU support. Dell ^^^^ Enabling SR-IOV with `racadm`: .. code:: shell /opt/dell/srvadmin/bin/idracadm7 set BIOS.IntegratedDevices.SriovGlobalEnable Enabled /opt/dell/srvadmin/bin/idracadm7 jobqueue create BIOS.Setup.1-1 <reboot> Obtain driver from NVIDIA licensing portal ------------------------------------------- Download Nvidia GRID driver from `here <https://docs.nvidia.com/grid/latest/grid-software-quick-start-guide/index.html#redeeming-pak-and-downloading-grid-software>`__ (This requires a login). The file can either be placed on the :ref:`ansible control host<NVIDIA control host>` or :ref:`uploaded to pulp<NVIDIA Pulp>`. .. _NVIDIA Pulp: Uploading the GRID driver to pulp --------------------------------- Uploading the driver to pulp will make it possible to run kayobe from any host. This can be useful when running in a CI environment. .. code:: shell pulp artifact upload --file ~/NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip pulp file content create --relative-path "NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip" --sha256 c8e12c15b881df35e618bdee1f141cbfcc7e112358f0139ceaa95b48e20761e0 pulp file repository create --name nvidia pulp file repository add --name nvidia --sha256 c8e12c15b881df35e618bdee1f141cbfcc7e112358f0139ceaa95b48e20761e0 --relative-path "NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip" pulp file publication create --repository nvidia pulp file distribution update --name nvidia --base-path nvidia --repository nvidia The file will then be available at ``<pulp_url>/pulp/content/nvidia/NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip``. You will need to set the ``vgpu_driver_url`` configuration option to this value: .. code:: yaml # URL of GRID driver in pulp vgpu_driver_url: "{{ pulp_url }}/pulp/content/nvidia/NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip" See :ref:`NVIDIA Role Configuration`. .. _NVIDIA control host: Placing the GRID driver on the ansible control host --------------------------------------------------- Copy the driver bundle to a known location on the ansible control host. Set the ``vgpu_driver_url`` configuration variable to reference this path using ``file`` as the url scheme e.g: .. code:: yaml # Location of NVIDIA GRID driver on localhost vgpu_driver_url: "file://{{ lookup('env', 'HOME') }}/NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip" See :ref:`NVIDIA Role Configuration`. .. _NVIDIA OS Configuration: OS Configuration ---------------- Host OS configuration is done by using roles in the `stackhpc.linux <https://github.com/stackhpc/ansible-collection-linux>`_ ansible collection. Add the following to your ansible ``requirements.yml``: .. code-block:: yaml :caption: $KAYOBE_CONFIG_PATH/ansible/requirements.yml #FIXME: Update to known release When VGPU and IOMMU roles have landed collections: - name: stackhpc.linux source: git+https://github.com/stackhpc/ansible-collection-linux.git,preemptive/vgpu-iommu type: git Create a new playbook or update an existing on to apply the roles: .. code-block:: yaml :caption: $KAYOBE_CONFIG_PATH/ansible/host-configure.yml --- - hosts: iommu tags: - iommu tasks: - import_role: name: stackhpc.linux.iommu handlers: - name: reboot set_fact: kayobe_needs_reboot: true - hosts: vgpu tags: - vgpu tasks: - import_role: name: stackhpc.linux.vgpu handlers: - name: reboot set_fact: kayobe_needs_reboot: true - name: Reboot when required hosts: iommu:vgpu tags: - reboot tasks: - name: Reboot reboot: reboot_timeout: 3600 become: true when: kayobe_needs_reboot | default(false) | bool Ansible Inventory Configuration ------------------------------- Add some hosts into the ``vgpu`` group. The example below maps two custom compute groups, ``compute_multi_instance_gpu`` and ``compute_vgpu``, into the ``vgpu`` group: .. code-block:: yaml :caption: $KAYOBE_CONFIG_PATH/inventory/custom [compute] [compute_multi_instance_gpu] [compute_vgpu] [vgpu:children] compute_multi_instance_gpu compute_vgpu [iommu:children] vgpu Having multiple groups is useful if you want to be able to do conditional templating in ``nova.conf`` (see :ref:`NVIDIA Kolla Ansible Configuration`). Since the vgpu role requires iommu to be enabled, all of the hosts in the ``vgpu`` group are also added to the ``iommu`` group. If using bifrost and the ``kayobe overcloud inventory discover`` mechanism, hosts can automatically be mapped to these groups by configuring ``overcloud_group_hosts_map``: .. code-block:: yaml :caption: ``$KAYOBE_CONFIG_PATH/overcloud.yml`` overcloud_group_hosts_map: compute_vgpu: - "computegpu000" compute_mutli_instance_gpu: - "computegpu001" .. _NVIDIA Role Configuration: Role Configuration ^^^^^^^^^^^^^^^^^^ Configure the location of the NVIDIA driver: .. code-block:: yaml :caption: $KAYOBE_CONFIG_PATH/vgpu.yml --- vgpu_driver_url: "http://{{ pulp_url }}/pulp/content/nvidia/NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip" Configure the VGPU devices: .. code-block:: yaml :caption: $KAYOBE_CONFIG_PATH/inventory/group_vars/compute_vgpu/vgpu #nvidia-692 GRID A100D-4C #nvidia-693 GRID A100D-8C #nvidia-694 GRID A100D-10C #nvidia-695 GRID A100D-16C #nvidia-696 GRID A100D-20C #nvidia-697 GRID A100D-40C #nvidia-698 GRID A100D-80C #nvidia-699 GRID A100D-1-10C #nvidia-700 GRID A100D-2-20C #nvidia-701 GRID A100D-3-40C #nvidia-702 GRID A100D-4-40C #nvidia-703 GRID A100D-7-80C #nvidia-707 GRID A100D-1-10CME vgpu_definitions: # Configuring a MIG backed VGPU - pci_address: "0000:17:00.0" virtual_functions: - mdev_type: nvidia-700 index: 0 - mdev_type: nvidia-700 index: 1 - mdev_type: nvidia-700 index: 2 - mdev_type: nvidia-699 index: 3 mig_devices: "1g.10gb": 1 "2g.20gb": 3 # Configuring a card in a time-sliced configuration (non-MIG backed) - pci_address: "0000:65:00.0" virtual_functions: - mdev_type: nvidia-697 index: 0 - mdev_type: nvidia-697 index: 1 Running the playbook ^^^^^^^^^^^^^^^^^^^^ The playbook defined in the :ref:`previous step<NVIDIA OS Configuration>` should be run after `kayobe overcloud host configure` has completed. This will ensure the host has been fully bootstrapped. With default settings, internet connectivity is required to download `MIG Partition Editor for NVIDIA GPUs`. If this is not desirable, you can override the one of the following variables (depending on host OS): .. code-block:: yaml :caption: $KAYOBE_CONFIG_PATH/inventory/group_vars/compute_vgpu/vgpu vgpu_nvidia_mig_manager_rpm_url: "https://github.com/NVIDIA/mig-parted/releases/download/v0.5.1/nvidia-mig-manager-0.5.1-1.x86_64.rpm" vgpu_nvidia_mig_manager_deb_url: "https://github.com/NVIDIA/mig-parted/releases/download/v0.5.1/nvidia-mig-manager_0.5.1-1_amd64.deb" For example, you may wish to upload these artifacts to the local pulp. Run the playbook that you defined earlier: .. code-block:: shell kayobe playbook run $KAYOBE_CONFIG_PATH/ansible/host-configure.yml Note: This will reboot the hosts on first run. The playbook may be added as a hook in ``$KAYOBE_CONFIG_PATH/hooks/overcloud-host-configure/post.d``; this will ensure you do not forget to run it when hosts are enrolled in the future. .. _NVIDIA Kolla Ansible Configuration: Kolla-Ansible configuration ^^^^^^^^^^^^^^^^^^^^^^^^^^^ To use the mdev devices that were created, modify nova.conf to add a list of mdev devices that can be passed through to guests: .. code-block:: :caption: $KAYOBE_CONFIG_PATH/kolla/config/nova/nova-compute.conf {% if inventory_hostname in groups['compute_multi_instance_gpu'] %} [devices] enabled_mdev_types = nvidia-700, nvidia-699 [mdev_nvidia-700] device_addresses = 0000:21:00.4,0000:21:00.5,0000:21:00.6,0000:81:00.4,0000:81:00.5,0000:81:00.6 mdev_class = CUSTOM_NVIDIA_700 [mdev_nvidia-699] device_addresses = 0000:21:00.7,0000:81:00.7 mdev_class = CUSTOM_NVIDIA_699 {% elif inventory_hostname in groups['compute_vgpu'] %} [devices] enabled_mdev_types = nvidia-697 [mdev_nvidia-697] device_addresses = 0000:21:00.4,0000:21:00.5,0000:81:00.4,0000:81:00.5 # Custom resource classes don't work when you only have single resource type. mdev_class = VGPU {% endif %} You will need to adjust the PCI addresses to match the virtual function addresses. These can be obtained by checking the mdevctl configuration after running the role: .. code-block:: shell # mdevctl list 73269d0f-b2c9-438d-8f28-f9e4bc6c6995 0000:17:00.4 nvidia-700 manual (defined) dc352ef3-efeb-4a5d-a48e-912eb230bc76 0000:17:00.5 nvidia-700 manual (defined) a464fbae-1f89-419a-a7bd-3a79c7b2eef4 0000:17:00.6 nvidia-700 manual (defined) f3b823d3-97c8-4e0a-ae1b-1f102dcb3bce 0000:17:00.7 nvidia-699 manual (defined) 330be289-ba3f-4416-8c8a-b46ba7e51284 0000:65:00.4 nvidia-700 manual (defined) 1ba5392c-c61f-4f48-8fb1-4c6b2bbb0673 0000:65:00.5 nvidia-700 manual (defined) f6868020-eb3a-49c6-9701-6c93e4e3fa9c 0000:65:00.6 nvidia-700 manual (defined) 00501f37-c468-5ba4-8be2-8d653c4604ed 0000:65:00.7 nvidia-699 manual (defined) The mdev_class maps to a resource class that you can set in your flavor definition. Note that if you only define a single mdev type on a given hypervisor, then the mdev_class configuration option is silently ignored and it will use the ``VGPU`` resource class (bug?). Map through the kayobe inventory groups into kolla: .. code-block:: yaml :caption: $KAYOBE_CONFIG_PATH/kolla.yml kolla_overcloud_inventory_top_level_group_map: control: groups: - controllers network: groups: - network compute_cpu: groups: - compute_cpu compute_gpu: groups: - compute_gpu compute_multi_instance_gpu: groups: - compute_multi_instance_gpu compute_vgpu: groups: - compute_vgpu compute: groups: - compute monitoring: groups: - monitoring storage: groups: "{{ kolla_overcloud_inventory_storage_groups }}" Where the ``compute_<suffix>`` groups have been added to the kayobe defaults. You will need to reconfigure nova for this change to be applied: .. code-block:: shell kayobe overcloud service deploy -kt nova --kolla-limit compute_vgpu Openstack flavors ^^^^^^^^^^^^^^^^^ Define some flavors that request the resource class that was configured in nova.conf. An example definition, that can be used with ``openstack.cloud.compute_flavor`` Ansible module, is shown below: .. code-block:: yaml vgpu_a100_2g_20gb: name: "vgpu.a100.2g.20gb" ram: 65536 disk: 30 vcpus: 8 is_public: false extra_specs: hw:cpu_policy: "dedicated" hw:cpu_thread_policy: "prefer" hw:mem_page_size: "1GB" hw:cpu_sockets: 2 hw:numa_nodes: 8 hw_rng:allowed: "True" resources:CUSTOM_NVIDIA_700: "1" You now should be able to launch a VM with this flavor. NVIDIA License Server ^^^^^^^^^^^^^^^^^^^^^ The Nvidia delegated license server is a virtual machine based appliance. You simply need to boot an instance using the image supplied on the NVIDIA Licensing portal. This can be done on the OpenStack cloud itself. The requirements are: * All tenants wishing to use GPU based instances must have network connectivity to this machine. (network licensing) - It is possible to configure node locked licensing where tenants do not need access to the license server * Satisfy minimum requirements detailed `here <https://docs.nvidia.com/license-system/dls/2.1.0/nvidia-dls-user-guide/index.html#dls-virtual-appliance-platform-requirements>`__. The official documentation for configuring the instance can be found `here <https://docs.nvidia.com/license-system/dls/2.1.0/nvidia-dls-user-guide/index.html#about-service-instances>`__. Below is a snippet of openstack-config for defining a project, and a security group that can be used for a non-HA deployment: .. code-block:: yaml secgroup_rules_nvidia_dls: # Allow ICMP (for ping, etc.). - ethertype: IPv4 protocol: icmp # Allow SSH. - ethertype: IPv4 protocol: tcp port_range_min: 22 port_range_max: 22 # https://docs.nvidia.com/license-system/latest/nvidia-license-system-user-guide/index.html - ethertype: IPv4 protocol: tcp port_range_min: 443 port_range_max: 443 - ethertype: IPv4 protocol: tcp port_range_min: 80 port_range_max: 80 - ethertype: IPv4 protocol: tcp port_range_min: 7070 port_range_max: 7070 secgroup_nvidia_dls: name: nvidia-dls project: "{{ project_cloud_services.name }}" rules: "{{ secgroup_rules_nvidia_dls }}" openstack_security_groups: - "{{ secgroup_nvidia_dls }}" project_cloud_services: name: "cloud-services" description: "Internal Cloud services" project_domain: default user_domain: default users: [] quotas: "{{ quotas_project }}" Booting the VM: .. code-block:: shell # Uploading the image and making it available in the cloud services project $ openstack image create --file nls-3.0.0-bios.qcow2 nls-3.0.0-bios --disk-format qcow2 $ openstack image add project nls-3.0.0-bios cloud-services $ openstack image set --accept nls-3.0.0-bios --project cloud-services $ openstack image member list nls-3.0.0-bios # Booting a server as the admin user in the cloud-services project. We pre-create the port so that # we can recreate it without changing the MAC address. $ openstack port create --mac-address fa:16:3e:a3:fd:19 --network external nvidia-dls-1 --project cloud-services $ openstack role add member --project cloud-services --user admin $ export OS_PROJECT_NAME=cloud-services $ openstack server group create nvidia-dls --policy anti-affinity $ openstack server create --flavor 8cpu-8gbmem-30gbdisk --image nls-3.0.0-bios --port nvidia-dls-1 --hint group=179dfa59-0947-4925-a0ff-b803bc0e58b2 nvidia-dls-cci1-1 --security-group nvidia-dls $ openstack server add security group nvidia-dls-1 nvidia-dls Disk image builder recipe to automatically license VGPU on boot ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `stackhpc-image-elements <https://github.com/stackhpc/stackhpc-image-elements>`__ provides a ``nvidia-vgpu`` element to configure the nvidia-gridd service in VGPU mode. This allows you to boot VMs that automatically license themselves. Snippets of ``openstack-config`` that allow you to do this are shown below: .. code-block:: shell image_rocky9_nvidia: name: "Rocky9-NVIDIA" type: raw elements: - "rocky-container" - "rpm" - "nvidia-vgpu" - "cloud-init" - "epel" - "cloud-init-growpart" - "selinux-permissive" - "dhcp-all-interfaces" - "vm" - "extra-repos" - "grub2" - "stable-interface-names" - "openssh-server" is_public: True packages: - "dkms" - "git" - "tmux" - "cuda-minimal-build-12-1" - "cuda-demo-suite-12-1" - "cuda-libraries-12-1" - "cuda-toolkit" - "vim-enhanced" env: DIB_CONTAINERFILE_NETWORK_DRIVER: host DIB_CONTAINERFILE_RUNTIME: docker DIB_RPMS: "http://192.168.1.2:80/pulp/content/nvidia/nvidia-linux-grid-525-525.105.17-1.x86_64.rpm" YUM: dnf DIB_EXTRA_REPOS: "https://developer.download.nvidia.com/compute/cuda/repos/rhel9/x86_64/cuda-rhel9.repo" DIB_NVIDIA_VGPU_CLIENT_TOKEN: "{{ lookup('file' , 'secrets/client_configuration_token_05-30-2023-12-41-40.tok') }}" DIB_CLOUD_INIT_GROWPART_DEVICES: - "/" DIB_RELEASE: "9" properties: os_type: "linux" os_distro: "rocky" os_version: "9" openstack_images: - "{{ image_rocky9_nvidia }}" openstack_image_git_elements: - repo: "https://github.com/stackhpc/stackhpc-image-elements" local: "{{ playbook_dir }}/stackhpc-image-elements" version: master elements_path: elements The gridd driver was uploaded pulp using the following procedure: .. code-block:: shell $ unzip NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip $ pulp artifact upload --file ~/nvidia-linux-grid-525-525.105.17-1.x86_64.rpm $ pulp file content create --relative-path "nvidia-linux-grid-525-525.105.17-1.x86_64.rpm" --sha256 58fda68d01f00ea76586c9fd5f161c9fbb907f627b7e4f4059a309d8112ec5f5 $ pulp file repository add --name nvidia --sha256 58fda68d01f00ea76586c9fd5f161c9fbb907f627b7e4f4059a309d8112ec5f5 --relative-path "nvidia-linux-grid-525-525.105.17-1.x86_64.rpm" $ pulp file publication create --repository nvidia $ pulp file distribution update --name nvidia --base-path nvidia --repository nvidia This is the file we reference in ``DIB_RPMS``. It is important to keep the driver versions aligned between hypervisor and guest VM. The client token can be downloaded from the web interface of the licensing portal. Care should be taken when copying the contents as it can contain invisible characters. It is best to copy the file directly into your openstack-config repository and vault encrypt it. The ``file`` lookup plugin can be used to decrypt the file (as shown in the example above). Changing VGPU device types ^^^^^^^^^^^^^^^^^^^^^^^^^^ Converting the second card to an NVIDIA-698 (whole card). The hypervisor is empty so we can freely delete mdevs. First clean up the mdev definition: .. code:: shell [stack@computegpu007 ~]$ sudo mdevctl list 5c630867-a673-5d75-aa31-a499e6c7cb19 0000:21:00.4 nvidia-697 manual (defined) eaa6e018-308e-58e2-b351-aadbcf01f5a8 0000:21:00.5 nvidia-697 manual (defined) 72291b01-689b-5b7a-9171-6b3480deabf4 0000:81:00.4 nvidia-697 manual (defined) 0a47ffd1-392e-5373-8428-707a4e0ce31a 0000:81:00.5 nvidia-697 manual (defined) [stack@computegpu007 ~]$ sudo mdevctl stop --uuid 72291b01-689b-5b7a-9171-6b3480deabf4 [stack@computegpu007 ~]$ sudo mdevctl stop --uuid 0a47ffd1-392e-5373-8428-707a4e0ce31a [stack@computegpu007 ~]$ sudo mdevctl undefine --uuid 0a47ffd1-392e-5373-8428-707a4e0ce31a [stack@computegpu007 ~]$ sudo mdevctl list --defined 5c630867-a673-5d75-aa31-a499e6c7cb19 0000:21:00.4 nvidia-697 manual (active) eaa6e018-308e-58e2-b351-aadbcf01f5a8 0000:21:00.5 nvidia-697 manual (active) 72291b01-689b-5b7a-9171-6b3480deabf4 0000:81:00.4 nvidia-697 manual # We can re-use the first virtual function Secondly remove the systemd unit that starts the mdev device: .. code:: shell [stack@computegpu007 ~]$ sudo rm /etc/systemd/system/multi-user.target.wants/nvidia-mdev@0a47ffd1-392e-5373-8428-707a4e0ce31a.service Example config change: .. code:: shell diff --git a/etc/kayobe/environments/cci1/inventory/host_vars/computegpu007/vgpu b/etc/kayobe/environments/cci1/inventory/host_vars/computegpu007/vgpu new file mode 100644 index 0000000..6cea9bf --- /dev/null +++ b/etc/kayobe/environments/cci1/inventory/host_vars/computegpu007/vgpu @@ -0,0 +1,12 @@ +--- +vgpu_definitions: + - pci_address: "0000:21:00.0" + virtual_functions: + - mdev_type: nvidia-697 + index: 0 + - mdev_type: nvidia-697 + index: 1 + - pci_address: "0000:81:00.0" + virtual_functions: + - mdev_type: nvidia-698 + index: 0 diff --git a/etc/kayobe/kolla/config/nova/nova-compute.conf b/etc/kayobe/kolla/config/nova/nova-compute.conf index 6f680cb..e663ec4 100644 --- a/etc/kayobe/kolla/config/nova/nova-compute.conf +++ b/etc/kayobe/kolla/config/nova/nova-compute.conf @@ -39,7 +39,19 @@ cpu_mode = host-model {% endraw %} {% raw %} -{% if inventory_hostname in groups['compute_multi_instance_gpu'] %} +{% if inventory_hostname == "computegpu007" %} +[devices] +enabled_mdev_types = nvidia-697, nvidia-698 + +[mdev_nvidia-697] +device_addresses = 0000:21:00.4,0000:21:00.5 +mdev_class = VGPU + +[mdev_nvidia-698] +device_addresses = 0000:81:00.4 +mdev_class = CUSTOM_NVIDIA_698 + +{% elif inventory_hostname in groups['compute_multi_instance_gpu'] %} [devices] enabled_mdev_types = nvidia-700, nvidia-699 @@ -50,15 +62,14 @@ mdev_class = CUSTOM_NVIDIA_700 [mdev_nvidia-699] device_addresses = 0000:21:00.7,0000:81:00.7 mdev_class = CUSTOM_NVIDIA_699 -{% endif %} -{% if inventory_hostname in groups['compute_vgpu'] %} +{% elif inventory_hostname in groups['compute_vgpu'] %} [devices] enabled_mdev_types = nvidia-697 [mdev_nvidia-697] device_addresses = 0000:21:00.4,0000:21:00.5,0000:81:00.4,0000:81:00.5 -# Custom resource classes don't seem to work for this card. +# Custom resource classes don't work when you only have single resource type. mdev_class = VGPU {% endif %} Re-run the configure playbook: .. code:: shell (kayobe) [stack@ansiblenode1 kayobe]$ kayobe playbook run $KAYOBE_CONFIG_PATH/ansible/host-configure.yml --tags vgpu --limit computegpu007 Check the result: .. code:: shell [stack@computegpu007 ~]$ mdevctl list 5c630867-a673-5d75-aa31-a499e6c7cb19 0000:21:00.4 nvidia-697 manual eaa6e018-308e-58e2-b351-aadbcf01f5a8 0000:21:00.5 nvidia-697 manual 72291b01-689b-5b7a-9171-6b3480deabf4 0000:81:00.4 nvidia-698 manual Reconfigure nova to match the change: .. code:: shell kayobe overcloud service reconfigure -kt nova --kolla-limit computegpu007 --skip-prechecks PCI Passthrough ############### This guide has been developed for Nvidia GPUs and CentOS 8. See `Kayobe Ops <https://github.com/stackhpc/kayobe-ops>`_ for a playbook implementation of host setup for GPU. BIOS Configuration Requirements ------------------------------- On an Intel system: * Enable `VT-x` in the BIOS for virtualisation support. * Enable `VT-d` in the BIOS for IOMMU support. Hypervisor Configuration Requirements ------------------------------------- Find the GPU device IDs ^^^^^^^^^^^^^^^^^^^^^^^ From the host OS, use ``lspci -nn`` to find the PCI vendor ID and device ID for the GPU device and supporting components. These are 4-digit hex numbers. For example: .. code-block:: text 01:00.0 VGA compatible controller [0300]: NVIDIA Corporation GM204M [GeForce GTX 980M] [10de:13d7] (rev a1) (prog-if 00 [VGA controller]) 01:00.1 Audio device [0403]: NVIDIA Corporation GM204 High Definition Audio Controller [10de:0fbb] (rev a1) In this case the vendor ID is ``10de``, display ID is ``13d7`` and audio ID is ``0fbb``. Alternatively, for an Nvidia Quadro RTX 6000: .. code-block:: yaml # NVIDIA Quadro RTX 6000/8000 PCI device IDs vendor_id: "10de" display_id: "1e30" audio_id: "10f7" usba_id: "1ad6" usba_class: "0c0330" usbc_id: "1ad7" usbc_class: "0c8000" These parameters will be used for device-specific configuration. Kernel Ramdisk Reconfiguration ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The ramdisk loaded during kernel boot can be extended to include the vfio PCI drivers and ensure they are loaded early in system boot. .. code-block:: yaml - name: Template dracut config blockinfile: path: /etc/dracut.conf.d/gpu-vfio.conf block: | add_drivers+="vfio vfio_iommu_type1 vfio_pci vfio_virqfd" owner: root group: root mode: 0660 create: true become: true notify: - Regenerate initramfs - reboot The handler for regenerating the Dracut initramfs is: .. code-block:: yaml - name: Regenerate initramfs shell: |- #!/bin/bash set -eux dracut -v -f /boot/initramfs-$(uname -r).img $(uname -r) become: true Kernel Boot Parameters ^^^^^^^^^^^^^^^^^^^^^^ Set the following kernel parameters by adding to ``GRUB_CMDLINE_LINUX_DEFAULT`` or ``GRUB_CMDLINE_LINUX`` in ``/etc/default/grub.conf``. We can use the `stackhpc.grubcmdline <https://galaxy.ansible.com/stackhpc/grubcmdline>`_ role from Ansible Galaxy: .. code-block:: yaml - name: Add vfio-pci.ids kernel args include_role: name: stackhpc.grubcmdline vars: kernel_cmdline: - intel_iommu=on - iommu=pt - "vfio-pci.ids={{ vendor_id }}:{{ display_id }},{{ vendor_id }}:{{ audio_id }}" kernel_cmdline_remove: - iommu - intel_iommu - vfio-pci.ids Kernel Device Management ^^^^^^^^^^^^^^^^^^^^^^^^ In the hypervisor, we must prevent kernel device initialisation of the GPU and prevent drivers from loading for binding the GPU in the host OS. We do this using ``udev`` rules: .. code-block:: yaml - name: Template udev rules to blacklist GPU usb controllers blockinfile: # We want this to execute as soon as possible path: /etc/udev/rules.d/99-gpu.rules block: | #Remove NVIDIA USB xHCI Host Controller Devices, if present ACTION=="add", SUBSYSTEM=="pci", ATTR{vendor}=="0x{{ vendor_id }}", ATTR{class}=="0x{{ usba_class }}", ATTR{remove}="1" #Remove NVIDIA USB Type-C UCSI devices, if present ACTION=="add", SUBSYSTEM=="pci", ATTR{vendor}=="0x{{ vendor_id }}", ATTR{class}=="0x{{ usbc_class }}", ATTR{remove}="1" owner: root group: root mode: 0644 create: true become: true Kernel Drivers ^^^^^^^^^^^^^^ Prevent the ``nouveau`` kernel driver from loading by blacklisting the module: .. code-block:: yaml - name: Blacklist nouveau blockinfile: path: /etc/modprobe.d/blacklist-nouveau.conf block: | blacklist nouveau options nouveau modeset=0 mode: 0664 owner: root group: root create: true become: true notify: - reboot - Regenerate initramfs Ensure that the ``vfio`` drivers are loaded into the kernel on boot: .. code-block:: yaml - name: Add vfio to modules-load.d blockinfile: path: /etc/modules-load.d/vfio.conf block: | vfio vfio_iommu_type1 vfio_pci vfio_virqfd owner: root group: root mode: 0664 create: true become: true notify: reboot Once this code has taken effect (after a reboot), the VFIO kernel drivers should be loaded on boot: .. code-block:: text # lsmod | grep vfio vfio_pci 49152 0 vfio_virqfd 16384 1 vfio_pci vfio_iommu_type1 28672 0 vfio 32768 2 vfio_iommu_type1,vfio_pci irqbypass 16384 5 vfio_pci,kvm # lspci -nnk -s 3d:00.0 3d:00.0 VGA compatible controller [0300]: NVIDIA Corporation GM107GL [Tesla M10] [10de:13bd] (rev a2) Subsystem: NVIDIA Corporation Tesla M10 [10de:1160] Kernel driver in use: vfio-pci Kernel modules: nouveau IOMMU should be enabled at kernel level as well - we can verify that on the compute host: .. code-block:: text # docker exec -it nova_libvirt virt-host-validate | grep IOMMU QEMU: Checking for device assignment IOMMU support : PASS QEMU: Checking if IOMMU is enabled by kernel : PASS OpenStack Nova configuration ---------------------------- Configure nova-scheduler ^^^^^^^^^^^^^^^^^^^^^^^^ The nova-scheduler service must be configured to enable the ``PciPassthroughFilter`` To enable it add it to the list of filters to Kolla-Ansible configuration file: ``etc/kayobe/kolla/config/nova.conf``, for instance: .. code-block:: yaml [filter_scheduler] available_filters = nova.scheduler.filters.all_filters enabled_filters = AvailabilityZoneFilter, ComputeFilter, ComputeCapabilitiesFilter, ImagePropertiesFilter, ServerGroupAntiAffinityFilter, ServerGroupAffinityFilter, PciPassthroughFilter Configure nova-compute ^^^^^^^^^^^^^^^^^^^^^^ Configuration can be applied in flexible ways using Kolla-Ansible's methods for `inventory-driven customisation of configuration <https://docs.openstack.org/kayobe/latest/configuration/reference/kolla-ansible.html#service-configuration>`_. The following configuration could be added to ``etc/kayobe/kolla/config/nova/nova-compute.conf`` to enable PCI passthrough of GPU devices for hosts in a group named ``compute_gpu``. Again, the 4-digit PCI Vendor ID and Device ID extracted from ``lspci -nn`` can be used here to specify the GPU device(s). .. code-block:: jinja [pci] {% raw %} {% if inventory_hostname in groups['compute_gpu'] %} # We could support multiple models of GPU. # This can be done more selectively using different inventory groups. # GPU models defined here: # NVidia Tesla V100 16GB # NVidia Tesla V100 32GB # NVidia Tesla P100 16GB passthrough_whitelist = [{ "vendor_id":"10de", "product_id":"1db4" }, { "vendor_id":"10de", "product_id":"1db5" }, { "vendor_id":"10de", "product_id":"15f8" }] alias = { "vendor_id":"10de", "product_id":"1db4", "device_type":"type-PCI", "name":"gpu-v100-16" } alias = { "vendor_id":"10de", "product_id":"1db5", "device_type":"type-PCI", "name":"gpu-v100-32" } alias = { "vendor_id":"10de", "product_id":"15f8", "device_type":"type-PCI", "name":"gpu-p100" } {% endif %} {% endraw %} Configure nova-api ^^^^^^^^^^^^^^^^^^ pci.alias also needs to be configured on the controller. This configuration should match the configuration found on the compute nodes. Add it to Kolla-Ansible configuration file: ``etc/kayobe/kolla/config/nova/nova-api.conf``, for instance: .. code-block:: yaml [pci] alias = { "vendor_id":"10de", "product_id":"1db4", "device_type":"type-PCI", "name":"gpu-v100-16" } alias = { "vendor_id":"10de", "product_id":"1db5", "device_type":"type-PCI", "name":"gpu-v100-32" } alias = { "vendor_id":"10de", "product_id":"15f8", "device_type":"type-PCI", "name":"gpu-p100" } Reconfigure nova service ^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: text kayobe overcloud service reconfigure --kolla-tags nova --kolla-skip-tags common --skip-prechecks Configure a flavor ^^^^^^^^^^^^^^^^^^ For example, to request two of the GPUs with alias gpu-p100 .. code-block:: text openstack flavor set m1.medium --property "pci_passthrough:alias"="gpu-p100:2" This can be also defined in the |project_config| repository: |project_config_source_url| add extra_specs to flavor in etc/|project_config|/|project_config|.yml: .. code-block:: console :substitutions: admin# cd |base_path|/src/|project_config| admin# vim etc/|project_config|/|project_config|.yml name: "m1.medium" ram: 4096 disk: 40 vcpus: 2 extra_specs: "pci_passthrough:alias": "gpu-p100:2" Invoke configuration playbooks afterwards: .. code-block:: console :substitutions: admin# source |base_path|/src/|kayobe_config|/etc/kolla/public-openrc.sh admin# source |base_path|/venvs/|project_config|/bin/activate admin# tools/|project_config| --vault-password-file |vault_password_file_path| Create instance with GPU passthrough ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: text openstack server create --flavor m1.medium --image ubuntu2004 --wait test-pci Testing GPU in a Guest VM ------------------------- The Nvidia drivers must be installed first. For example, on an Ubuntu guest: .. code-block:: text sudo apt install nvidia-headless-440 nvidia-utils-440 nvidia-compute-utils-440 The ``nvidia-smi`` command will generate detailed output if the driver has loaded successfully. Further Reference ----------------- For PCI Passthrough and GPUs in OpenStack: * Consumer-grade GPUs: https://gist.github.com/claudiok/890ab6dfe76fa45b30081e58038a9215 * https://www.jimmdenton.com/gpu-offloading-openstack/ * https://docs.openstack.org/nova/latest/admin/pci-passthrough.html * https://docs.openstack.org/nova/latest/admin/virtual-gpu.html (vGPU only) * Tesla models in OpenStack: https://egallen.com/openstack-nvidia-tesla-gpu-passthrough/ * https://wiki.archlinux.org/index.php/PCI_passthrough_via_OVMF * https://www.kernel.org/doc/Documentation/Intel-IOMMU.txt * https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.1/html/installation_guide/appe-configuring_a_hypervisor_host_for_pci_passthrough * https://www.gresearch.co.uk/article/utilising-the-openstack-placement-service-to-schedule-gpu-and-nvme-workloads-alongside-general-purpose-instances/