Support for GPUs in OpenStack¶
NVIDIA Virtual GPU¶
BIOS configuration¶
Intel¶
Enable VT-x in the BIOS for virtualisation support.
Enable VT-d in the BIOS for IOMMU support.
Dell¶
Enabling SR-IOV with racadm:
/opt/dell/srvadmin/bin/idracadm7 set BIOS.IntegratedDevices.SriovGlobalEnable Enabled
/opt/dell/srvadmin/bin/idracadm7 jobqueue create BIOS.Setup.1-1
<reboot>
Obtain driver from NVIDIA licensing portal¶
Download Nvidia GRID driver from here (This requires a login). The file can either be placed on the ansible control host or uploaded to pulp.
Uploading the GRID driver to pulp¶
Uploading the driver to pulp will make it possible to run kayobe from any host. This can be useful when running in a CI environment.
pulp artifact upload --file ~/NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip
pulp file content create --relative-path "NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip" --sha256 c8e12c15b881df35e618bdee1f141cbfcc7e112358f0139ceaa95b48e20761e0
pulp file repository create --name nvidia
pulp file repository add --name nvidia --sha256 c8e12c15b881df35e618bdee1f141cbfcc7e112358f0139ceaa95b48e20761e0 --relative-path "NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip"
pulp file publication create --repository nvidia
pulp file distribution update --name nvidia --base-path nvidia --repository nvidia
The file will then be available at <pulp_url>/pulp/content/nvidia/NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip
. You
will need to set the vgpu_driver_url
configuration option to this value:
# URL of GRID driver in pulp
vgpu_driver_url: "{{ pulp_url }}/pulp/content/nvidia/NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip"
See Role Configuration.
Placing the GRID driver on the ansible control host¶
Copy the driver bundle to a known location on the ansible control host. Set the vgpu_driver_url
configuration variable to reference this
path using file
as the url scheme e.g:
# Location of NVIDIA GRID driver on localhost
vgpu_driver_url: "file://{{ lookup('env', 'HOME') }}/NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip"
See Role Configuration.
OS Configuration¶
Host OS configuration is done by using roles in the stackhpc.linux ansible collection.
Add the following to your ansible requirements.yml
:
#FIXME: Update to known release When VGPU and IOMMU roles have landed
collections:
- name: stackhpc.linux
source: git+https://github.com/stackhpc/ansible-collection-linux.git,preemptive/vgpu-iommu
type: git
Create a new playbook or update an existing on to apply the roles:
---
- hosts: iommu
tags:
- iommu
tasks:
- import_role:
name: stackhpc.linux.iommu
handlers:
- name: reboot
set_fact:
kayobe_needs_reboot: true
- hosts: vgpu
tags:
- vgpu
tasks:
- import_role:
name: stackhpc.linux.vgpu
handlers:
- name: reboot
set_fact:
kayobe_needs_reboot: true
- name: Reboot when required
hosts: iommu:vgpu
tags:
- reboot
tasks:
- name: Reboot
reboot:
reboot_timeout: 3600
become: true
when: kayobe_needs_reboot | default(false) | bool
Ansible Inventory Configuration¶
Add some hosts into the vgpu
group. The example below maps two custom
compute groups, compute_multi_instance_gpu
and compute_vgpu
,
into the vgpu
group:
[compute]
[compute_multi_instance_gpu]
[compute_vgpu]
[vgpu:children]
compute_multi_instance_gpu
compute_vgpu
[iommu:children]
vgpu
Having multiple groups is useful if you want to be able to do conditional
templating in nova.conf
(see Kolla-Ansible configuration). Since the vgpu role requires iommu to be enabled, all of the
hosts in the vgpu
group are also added to the iommu
group.
If using bifrost and the kayobe overcloud inventory discover
mechanism,
hosts can automatically be mapped to these groups by configuring
overcloud_group_hosts_map
:
$KAYOBE_CONFIG_PATH/overcloud.yml
¶ overcloud_group_hosts_map:
compute_vgpu:
- "computegpu000"
compute_mutli_instance_gpu:
- "computegpu001"
Role Configuration¶
Configure the location of the NVIDIA driver:
---
vgpu_driver_url: "http://{{ pulp_url }}/pulp/content/nvidia/NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip"
Configure the VGPU devices:
#nvidia-692 GRID A100D-4C
#nvidia-693 GRID A100D-8C
#nvidia-694 GRID A100D-10C
#nvidia-695 GRID A100D-16C
#nvidia-696 GRID A100D-20C
#nvidia-697 GRID A100D-40C
#nvidia-698 GRID A100D-80C
#nvidia-699 GRID A100D-1-10C
#nvidia-700 GRID A100D-2-20C
#nvidia-701 GRID A100D-3-40C
#nvidia-702 GRID A100D-4-40C
#nvidia-703 GRID A100D-7-80C
#nvidia-707 GRID A100D-1-10CME
vgpu_definitions:
# Configuring a MIG backed VGPU
- pci_address: "0000:17:00.0"
virtual_functions:
- mdev_type: nvidia-700
index: 0
- mdev_type: nvidia-700
index: 1
- mdev_type: nvidia-700
index: 2
- mdev_type: nvidia-699
index: 3
mig_devices:
"1g.10gb": 1
"2g.20gb": 3
# Configuring a card in a time-sliced configuration (non-MIG backed)
- pci_address: "0000:65:00.0"
virtual_functions:
- mdev_type: nvidia-697
index: 0
- mdev_type: nvidia-697
index: 1
Running the playbook¶
The playbook defined in the previous step should be run after kayobe overcloud host configure has completed. This will ensure the host has been fully bootstrapped. With default settings, internet connectivity is required to download MIG Partition Editor for NVIDIA GPUs. If this is not desirable, you can override the one of the following variables (depending on host OS):
vgpu_nvidia_mig_manager_rpm_url: "https://github.com/NVIDIA/mig-parted/releases/download/v0.5.1/nvidia-mig-manager-0.5.1-1.x86_64.rpm"
vgpu_nvidia_mig_manager_deb_url: "https://github.com/NVIDIA/mig-parted/releases/download/v0.5.1/nvidia-mig-manager_0.5.1-1_amd64.deb"
For example, you may wish to upload these artifacts to the local pulp.
Run the playbook that you defined earlier:
kayobe playbook run $KAYOBE_CONFIG_PATH/ansible/host-configure.yml
Note: This will reboot the hosts on first run.
The playbook may be added as a hook in $KAYOBE_CONFIG_PATH/hooks/overcloud-host-configure/post.d
; this will
ensure you do not forget to run it when hosts are enrolled in the future.
Kolla-Ansible configuration¶
To use the mdev devices that were created, modify nova.conf to add a list of mdev devices that can be passed through to guests:
{% if inventory_hostname in groups['compute_multi_instance_gpu'] %}
[devices]
enabled_mdev_types = nvidia-700, nvidia-699
[mdev_nvidia-700]
device_addresses = 0000:21:00.4,0000:21:00.5,0000:21:00.6,0000:81:00.4,0000:81:00.5,0000:81:00.6
mdev_class = CUSTOM_NVIDIA_700
[mdev_nvidia-699]
device_addresses = 0000:21:00.7,0000:81:00.7
mdev_class = CUSTOM_NVIDIA_699
{% elif inventory_hostname in groups['compute_vgpu'] %}
[devices]
enabled_mdev_types = nvidia-697
[mdev_nvidia-697]
device_addresses = 0000:21:00.4,0000:21:00.5,0000:81:00.4,0000:81:00.5
# Custom resource classes don't work when you only have single resource type.
mdev_class = VGPU
{% endif %}
You will need to adjust the PCI addresses to match the virtual function addresses. These can be obtained by checking the mdevctl configuration after running the role:
# mdevctl list
73269d0f-b2c9-438d-8f28-f9e4bc6c6995 0000:17:00.4 nvidia-700 manual (defined)
dc352ef3-efeb-4a5d-a48e-912eb230bc76 0000:17:00.5 nvidia-700 manual (defined)
a464fbae-1f89-419a-a7bd-3a79c7b2eef4 0000:17:00.6 nvidia-700 manual (defined)
f3b823d3-97c8-4e0a-ae1b-1f102dcb3bce 0000:17:00.7 nvidia-699 manual (defined)
330be289-ba3f-4416-8c8a-b46ba7e51284 0000:65:00.4 nvidia-700 manual (defined)
1ba5392c-c61f-4f48-8fb1-4c6b2bbb0673 0000:65:00.5 nvidia-700 manual (defined)
f6868020-eb3a-49c6-9701-6c93e4e3fa9c 0000:65:00.6 nvidia-700 manual (defined)
00501f37-c468-5ba4-8be2-8d653c4604ed 0000:65:00.7 nvidia-699 manual (defined)
The mdev_class maps to a resource class that you can set in your flavor definition.
Note that if you only define a single mdev type on a given hypervisor, then the
mdev_class configuration option is silently ignored and it will use the VGPU
resource class (bug?).
Map through the kayobe inventory groups into kolla:
kolla_overcloud_inventory_top_level_group_map:
control:
groups:
- controllers
network:
groups:
- network
compute_cpu:
groups:
- compute_cpu
compute_gpu:
groups:
- compute_gpu
compute_multi_instance_gpu:
groups:
- compute_multi_instance_gpu
compute_vgpu:
groups:
- compute_vgpu
compute:
groups:
- compute
monitoring:
groups:
- monitoring
storage:
groups:
"{{ kolla_overcloud_inventory_storage_groups }}"
Where the compute_<suffix>
groups have been added to the kayobe defaults.
You will need to reconfigure nova for this change to be applied:
kayobe overcloud service deploy -kt nova --kolla-limit compute_vgpu
Openstack flavors¶
Define some flavors that request the resource class that was configured in nova.conf.
An example definition, that can be used with openstack.cloud.compute_flavor
Ansible module,
is shown below:
vgpu_a100_2g_20gb:
name: "vgpu.a100.2g.20gb"
ram: 65536
disk: 30
vcpus: 8
is_public: false
extra_specs:
hw:cpu_policy: "dedicated"
hw:cpu_thread_policy: "prefer"
hw:mem_page_size: "1GB"
hw:cpu_sockets: 2
hw:numa_nodes: 8
hw_rng:allowed: "True"
resources:CUSTOM_NVIDIA_700: "1"
You now should be able to launch a VM with this flavor.
NVIDIA License Server¶
The Nvidia delegated license server is a virtual machine based appliance. You simply need to boot an instance using the image supplied on the NVIDIA Licensing portal. This can be done on the OpenStack cloud itself. The requirements are:
All tenants wishing to use GPU based instances must have network connectivity to this machine. (network licensing) - It is possible to configure node locked licensing where tenants do not need access to the license server
Satisfy minimum requirements detailed here.
The official documentation for configuring the instance can be found here.
Below is a snippet of openstack-config for defining a project, and a security group that can be used for a non-HA deployment:
secgroup_rules_nvidia_dls:
# Allow ICMP (for ping, etc.).
- ethertype: IPv4
protocol: icmp
# Allow SSH.
- ethertype: IPv4
protocol: tcp
port_range_min: 22
port_range_max: 22
# https://docs.nvidia.com/license-system/latest/nvidia-license-system-user-guide/index.html
- ethertype: IPv4
protocol: tcp
port_range_min: 443
port_range_max: 443
- ethertype: IPv4
protocol: tcp
port_range_min: 80
port_range_max: 80
- ethertype: IPv4
protocol: tcp
port_range_min: 7070
port_range_max: 7070
secgroup_nvidia_dls:
name: nvidia-dls
project: "{{ project_cloud_services.name }}"
rules: "{{ secgroup_rules_nvidia_dls }}"
openstack_security_groups:
- "{{ secgroup_nvidia_dls }}"
project_cloud_services:
name: "cloud-services"
description: "Internal Cloud services"
project_domain: default
user_domain: default
users: []
quotas: "{{ quotas_project }}"
Booting the VM:
# Uploading the image and making it available in the cloud services project
$ openstack image create --file nls-3.0.0-bios.qcow2 nls-3.0.0-bios --disk-format qcow2
$ openstack image add project nls-3.0.0-bios cloud-services
$ openstack image set --accept nls-3.0.0-bios --project cloud-services
$ openstack image member list nls-3.0.0-bios
# Booting a server as the admin user in the cloud-services project. We pre-create the port so that
# we can recreate it without changing the MAC address.
$ openstack port create --mac-address fa:16:3e:a3:fd:19 --network external nvidia-dls-1 --project cloud-services
$ openstack role add member --project cloud-services --user admin
$ export OS_PROJECT_NAME=cloud-services
$ openstack server group create nvidia-dls --policy anti-affinity
$ openstack server create --flavor 8cpu-8gbmem-30gbdisk --image nls-3.0.0-bios --port nvidia-dls-1 --hint group=179dfa59-0947-4925-a0ff-b803bc0e58b2 nvidia-dls-cci1-1 --security-group nvidia-dls
$ openstack server add security group nvidia-dls-1 nvidia-dls
Disk image builder recipe to automatically license VGPU on boot¶
stackhpc-image-elements provides a nvidia-vgpu
element to configure the nvidia-gridd service in VGPU mode. This allows you to boot VMs that automatically license themselves.
Snippets of openstack-config
that allow you to do this are shown below:
image_rocky9_nvidia:
name: "Rocky9-NVIDIA"
type: raw
elements:
- "rocky-container"
- "rpm"
- "nvidia-vgpu"
- "cloud-init"
- "epel"
- "cloud-init-growpart"
- "selinux-permissive"
- "dhcp-all-interfaces"
- "vm"
- "extra-repos"
- "grub2"
- "stable-interface-names"
- "openssh-server"
is_public: True
packages:
- "dkms"
- "git"
- "tmux"
- "cuda-minimal-build-12-1"
- "cuda-demo-suite-12-1"
- "cuda-libraries-12-1"
- "cuda-toolkit"
- "vim-enhanced"
env:
DIB_CONTAINERFILE_NETWORK_DRIVER: host
DIB_CONTAINERFILE_RUNTIME: docker
DIB_RPMS: "http://192.168.1.2:80/pulp/content/nvidia/nvidia-linux-grid-525-525.105.17-1.x86_64.rpm"
YUM: dnf
DIB_EXTRA_REPOS: "https://developer.download.nvidia.com/compute/cuda/repos/rhel9/x86_64/cuda-rhel9.repo"
DIB_NVIDIA_VGPU_CLIENT_TOKEN: "{{ lookup('file' , 'secrets/client_configuration_token_05-30-2023-12-41-40.tok') }}"
DIB_CLOUD_INIT_GROWPART_DEVICES:
- "/"
DIB_RELEASE: "9"
properties:
os_type: "linux"
os_distro: "rocky"
os_version: "9"
openstack_images:
- "{{ image_rocky9_nvidia }}"
openstack_image_git_elements:
- repo: "https://github.com/stackhpc/stackhpc-image-elements"
local: "{{ playbook_dir }}/stackhpc-image-elements"
version: master
elements_path: elements
The gridd driver was uploaded pulp using the following procedure:
$ unzip NVIDIA-GRID-Linux-KVM-525.105.14-525.105.17-528.89.zip
$ pulp artifact upload --file ~/nvidia-linux-grid-525-525.105.17-1.x86_64.rpm
$ pulp file content create --relative-path "nvidia-linux-grid-525-525.105.17-1.x86_64.rpm" --sha256 58fda68d01f00ea76586c9fd5f161c9fbb907f627b7e4f4059a309d8112ec5f5
$ pulp file repository add --name nvidia --sha256 58fda68d01f00ea76586c9fd5f161c9fbb907f627b7e4f4059a309d8112ec5f5 --relative-path "nvidia-linux-grid-525-525.105.17-1.x86_64.rpm"
$ pulp file publication create --repository nvidia
$ pulp file distribution update --name nvidia --base-path nvidia --repository nvidia
This is the file we reference in DIB_RPMS
. It is important to keep the driver versions aligned between hypervisor and guest VM.
The client token can be downloaded from the web interface of the licensing portal. Care should be taken
when copying the contents as it can contain invisible characters. It is best to copy the file directly
into your openstack-config repository and vault encrypt it. The file
lookup plugin can be used to decrypt
the file (as shown in the example above).
Changing VGPU device types¶
Converting the second card to an NVIDIA-698 (whole card). The hypervisor is empty so we can freely delete mdevs. First clean up the mdev definition:
[stack@computegpu007 ~]$ sudo mdevctl list
5c630867-a673-5d75-aa31-a499e6c7cb19 0000:21:00.4 nvidia-697 manual (defined)
eaa6e018-308e-58e2-b351-aadbcf01f5a8 0000:21:00.5 nvidia-697 manual (defined)
72291b01-689b-5b7a-9171-6b3480deabf4 0000:81:00.4 nvidia-697 manual (defined)
0a47ffd1-392e-5373-8428-707a4e0ce31a 0000:81:00.5 nvidia-697 manual (defined)
[stack@computegpu007 ~]$ sudo mdevctl stop --uuid 72291b01-689b-5b7a-9171-6b3480deabf4
[stack@computegpu007 ~]$ sudo mdevctl stop --uuid 0a47ffd1-392e-5373-8428-707a4e0ce31a
[stack@computegpu007 ~]$ sudo mdevctl undefine --uuid 0a47ffd1-392e-5373-8428-707a4e0ce31a
[stack@computegpu007 ~]$ sudo mdevctl list --defined
5c630867-a673-5d75-aa31-a499e6c7cb19 0000:21:00.4 nvidia-697 manual (active)
eaa6e018-308e-58e2-b351-aadbcf01f5a8 0000:21:00.5 nvidia-697 manual (active)
72291b01-689b-5b7a-9171-6b3480deabf4 0000:81:00.4 nvidia-697 manual
# We can re-use the first virtual function
Secondly remove the systemd unit that starts the mdev device:
[stack@computegpu007 ~]$ sudo rm /etc/systemd/system/multi-user.target.wants/nvidia-mdev@0a47ffd1-392e-5373-8428-707a4e0ce31a.service
Example config change:
diff --git a/etc/kayobe/environments/cci1/inventory/host_vars/computegpu007/vgpu b/etc/kayobe/environments/cci1/inventory/host_vars/computegpu007/vgpu
new file mode 100644
index 0000000..6cea9bf
--- /dev/null
+++ b/etc/kayobe/environments/cci1/inventory/host_vars/computegpu007/vgpu
@@ -0,0 +1,12 @@
+---
+vgpu_definitions:
+ - pci_address: "0000:21:00.0"
+ virtual_functions:
+ - mdev_type: nvidia-697
+ index: 0
+ - mdev_type: nvidia-697
+ index: 1
+ - pci_address: "0000:81:00.0"
+ virtual_functions:
+ - mdev_type: nvidia-698
+ index: 0
diff --git a/etc/kayobe/kolla/config/nova/nova-compute.conf b/etc/kayobe/kolla/config/nova/nova-compute.conf
index 6f680cb..e663ec4 100644
--- a/etc/kayobe/kolla/config/nova/nova-compute.conf
+++ b/etc/kayobe/kolla/config/nova/nova-compute.conf
@@ -39,7 +39,19 @@ cpu_mode = host-model
{% endraw %}
{% raw %}
-{% if inventory_hostname in groups['compute_multi_instance_gpu'] %}
+{% if inventory_hostname == "computegpu007" %}
+[devices]
+enabled_mdev_types = nvidia-697, nvidia-698
+
+[mdev_nvidia-697]
+device_addresses = 0000:21:00.4,0000:21:00.5
+mdev_class = VGPU
+
+[mdev_nvidia-698]
+device_addresses = 0000:81:00.4
+mdev_class = CUSTOM_NVIDIA_698
+
+{% elif inventory_hostname in groups['compute_multi_instance_gpu'] %}
[devices]
enabled_mdev_types = nvidia-700, nvidia-699
@@ -50,15 +62,14 @@ mdev_class = CUSTOM_NVIDIA_700
[mdev_nvidia-699]
device_addresses = 0000:21:00.7,0000:81:00.7
mdev_class = CUSTOM_NVIDIA_699
-{% endif %}
-{% if inventory_hostname in groups['compute_vgpu'] %}
+{% elif inventory_hostname in groups['compute_vgpu'] %}
[devices]
enabled_mdev_types = nvidia-697
[mdev_nvidia-697]
device_addresses = 0000:21:00.4,0000:21:00.5,0000:81:00.4,0000:81:00.5
-# Custom resource classes don't seem to work for this card.
+# Custom resource classes don't work when you only have single resource type.
mdev_class = VGPU
{% endif %}
Re-run the configure playbook:
(kayobe) [stack@ansiblenode1 kayobe]$ kayobe playbook run $KAYOBE_CONFIG_PATH/ansible/host-configure.yml --tags vgpu --limit computegpu007
Check the result:
[stack@computegpu007 ~]$ mdevctl list
5c630867-a673-5d75-aa31-a499e6c7cb19 0000:21:00.4 nvidia-697 manual
eaa6e018-308e-58e2-b351-aadbcf01f5a8 0000:21:00.5 nvidia-697 manual
72291b01-689b-5b7a-9171-6b3480deabf4 0000:81:00.4 nvidia-698 manual
Reconfigure nova to match the change:
kayobe overcloud service reconfigure -kt nova --kolla-limit computegpu007 --skip-prechecks
PCI Passthrough¶
This guide has been developed for Nvidia GPUs and CentOS 8.
See Kayobe Ops for a playbook implementation of host setup for GPU.
BIOS Configuration Requirements¶
On an Intel system:
Enable VT-x in the BIOS for virtualisation support.
Enable VT-d in the BIOS for IOMMU support.
Hypervisor Configuration Requirements¶
Find the GPU device IDs¶
From the host OS, use lspci -nn
to find the PCI vendor ID and
device ID for the GPU device and supporting components. These are
4-digit hex numbers.
For example:
01:00.0 VGA compatible controller [0300]: NVIDIA Corporation GM204M [GeForce GTX 980M] [10de:13d7] (rev a1) (prog-if 00 [VGA controller])
01:00.1 Audio device [0403]: NVIDIA Corporation GM204 High Definition Audio Controller [10de:0fbb] (rev a1)
In this case the vendor ID is 10de
, display ID is 13d7
and audio ID is 0fbb
.
Alternatively, for an Nvidia Quadro RTX 6000:
# NVIDIA Quadro RTX 6000/8000 PCI device IDs
vendor_id: "10de"
display_id: "1e30"
audio_id: "10f7"
usba_id: "1ad6"
usba_class: "0c0330"
usbc_id: "1ad7"
usbc_class: "0c8000"
These parameters will be used for device-specific configuration.
Kernel Ramdisk Reconfiguration¶
The ramdisk loaded during kernel boot can be extended to include the vfio PCI drivers and ensure they are loaded early in system boot.
- name: Template dracut config
blockinfile:
path: /etc/dracut.conf.d/gpu-vfio.conf
block: |
add_drivers+="vfio vfio_iommu_type1 vfio_pci vfio_virqfd"
owner: root
group: root
mode: 0660
create: true
become: true
notify:
- Regenerate initramfs
- reboot
The handler for regenerating the Dracut initramfs is:
- name: Regenerate initramfs
shell: |-
#!/bin/bash
set -eux
dracut -v -f /boot/initramfs-$(uname -r).img $(uname -r)
become: true
Kernel Boot Parameters¶
Set the following kernel parameters by adding to
GRUB_CMDLINE_LINUX_DEFAULT
or GRUB_CMDLINE_LINUX
in
/etc/default/grub.conf
. We can use the
stackhpc.grubcmdline
role from Ansible Galaxy:
- name: Add vfio-pci.ids kernel args
include_role:
name: stackhpc.grubcmdline
vars:
kernel_cmdline:
- intel_iommu=on
- iommu=pt
- "vfio-pci.ids={{ vendor_id }}:{{ display_id }},{{ vendor_id }}:{{ audio_id }}"
kernel_cmdline_remove:
- iommu
- intel_iommu
- vfio-pci.ids
Kernel Device Management¶
In the hypervisor, we must prevent kernel device initialisation of
the GPU and prevent drivers from loading for binding the GPU in the
host OS. We do this using udev
rules:
- name: Template udev rules to blacklist GPU usb controllers
blockinfile:
# We want this to execute as soon as possible
path: /etc/udev/rules.d/99-gpu.rules
block: |
#Remove NVIDIA USB xHCI Host Controller Devices, if present
ACTION=="add", SUBSYSTEM=="pci", ATTR{vendor}=="0x{{ vendor_id }}", ATTR{class}=="0x{{ usba_class }}", ATTR{remove}="1"
#Remove NVIDIA USB Type-C UCSI devices, if present
ACTION=="add", SUBSYSTEM=="pci", ATTR{vendor}=="0x{{ vendor_id }}", ATTR{class}=="0x{{ usbc_class }}", ATTR{remove}="1"
owner: root
group: root
mode: 0644
create: true
become: true
Kernel Drivers¶
Prevent the nouveau
kernel driver from loading by
blacklisting the module:
- name: Blacklist nouveau
blockinfile:
path: /etc/modprobe.d/blacklist-nouveau.conf
block: |
blacklist nouveau
options nouveau modeset=0
mode: 0664
owner: root
group: root
create: true
become: true
notify:
- reboot
- Regenerate initramfs
Ensure that the vfio
drivers are loaded into the kernel on boot:
- name: Add vfio to modules-load.d
blockinfile:
path: /etc/modules-load.d/vfio.conf
block: |
vfio
vfio_iommu_type1
vfio_pci
vfio_virqfd
owner: root
group: root
mode: 0664
create: true
become: true
notify: reboot
Once this code has taken effect (after a reboot), the VFIO kernel drivers should be loaded on boot:
# lsmod | grep vfio
vfio_pci 49152 0
vfio_virqfd 16384 1 vfio_pci
vfio_iommu_type1 28672 0
vfio 32768 2 vfio_iommu_type1,vfio_pci
irqbypass 16384 5 vfio_pci,kvm
# lspci -nnk -s 3d:00.0
3d:00.0 VGA compatible controller [0300]: NVIDIA Corporation GM107GL [Tesla M10] [10de:13bd] (rev a2)
Subsystem: NVIDIA Corporation Tesla M10 [10de:1160]
Kernel driver in use: vfio-pci
Kernel modules: nouveau
IOMMU should be enabled at kernel level as well - we can verify that on the compute host:
# docker exec -it nova_libvirt virt-host-validate | grep IOMMU
QEMU: Checking for device assignment IOMMU support : PASS
QEMU: Checking if IOMMU is enabled by kernel : PASS
OpenStack Nova configuration¶
Configure nova-scheduler¶
The nova-scheduler service must be configured to enable the PciPassthroughFilter
To enable it add it to the list of filters to Kolla-Ansible configuration file:
etc/kayobe/kolla/config/nova.conf
, for instance:
[filter_scheduler]
available_filters = nova.scheduler.filters.all_filters
enabled_filters = AvailabilityZoneFilter, ComputeFilter, ComputeCapabilitiesFilter, ImagePropertiesFilter, ServerGroupAntiAffinityFilter, ServerGroupAffinityFilter, PciPassthroughFilter
Configure nova-compute¶
Configuration can be applied in flexible ways using Kolla-Ansible’s
methods for inventory-driven customisation of configuration.
The following configuration could be added to
etc/kayobe/kolla/config/nova/nova-compute.conf
to enable PCI
passthrough of GPU devices for hosts in a group named compute_gpu
.
Again, the 4-digit PCI Vendor ID and Device ID extracted from lspci
-nn
can be used here to specify the GPU device(s).
[pci]
{% raw %}
{% if inventory_hostname in groups['compute_gpu'] %}
# We could support multiple models of GPU.
# This can be done more selectively using different inventory groups.
# GPU models defined here:
# NVidia Tesla V100 16GB
# NVidia Tesla V100 32GB
# NVidia Tesla P100 16GB
passthrough_whitelist = [{ "vendor_id":"10de", "product_id":"1db4" },
{ "vendor_id":"10de", "product_id":"1db5" },
{ "vendor_id":"10de", "product_id":"15f8" }]
alias = { "vendor_id":"10de", "product_id":"1db4", "device_type":"type-PCI", "name":"gpu-v100-16" }
alias = { "vendor_id":"10de", "product_id":"1db5", "device_type":"type-PCI", "name":"gpu-v100-32" }
alias = { "vendor_id":"10de", "product_id":"15f8", "device_type":"type-PCI", "name":"gpu-p100" }
{% endif %}
{% endraw %}
Configure nova-api¶
pci.alias also needs to be configured on the controller.
This configuration should match the configuration found on the compute nodes.
Add it to Kolla-Ansible configuration file:
etc/kayobe/kolla/config/nova/nova-api.conf
, for instance:
[pci]
alias = { "vendor_id":"10de", "product_id":"1db4", "device_type":"type-PCI", "name":"gpu-v100-16" }
alias = { "vendor_id":"10de", "product_id":"1db5", "device_type":"type-PCI", "name":"gpu-v100-32" }
alias = { "vendor_id":"10de", "product_id":"15f8", "device_type":"type-PCI", "name":"gpu-p100" }
Reconfigure nova service¶
kayobe overcloud service reconfigure --kolla-tags nova --kolla-skip-tags common --skip-prechecks
Configure a flavor¶
For example, to request two of the GPUs with alias gpu-p100
openstack flavor set m1.medium --property "pci_passthrough:alias"="gpu-p100:2"
This can be also defined in the acme-config repository: https://github.com/acme-openstack/acme-config.git
add extra_specs to flavor in etc/acme-config/acme-config.yml:
admin# cd ~/kayobe-env/src/acme-config
admin# vim etc/acme-config/acme-config.yml
name: "m1.medium"
ram: 4096
disk: 40
vcpus: 2
extra_specs:
"pci_passthrough:alias": "gpu-p100:2"
Invoke configuration playbooks afterwards:
admin# source ~/kayobe-env/src/kayobe-config/etc/kolla/public-openrc.sh
admin# source ~/kayobe-env/venvs/acme-config/bin/activate
admin# tools/acme-config --vault-password-file ~/vault-password
Create instance with GPU passthrough¶
openstack server create --flavor m1.medium --image ubuntu2004 --wait test-pci
Testing GPU in a Guest VM¶
The Nvidia drivers must be installed first. For example, on an Ubuntu guest:
sudo apt install nvidia-headless-440 nvidia-utils-440 nvidia-compute-utils-440
The nvidia-smi
command will generate detailed output if the driver has loaded
successfully.
Further Reference¶
For PCI Passthrough and GPUs in OpenStack:
Consumer-grade GPUs: https://gist.github.com/claudiok/890ab6dfe76fa45b30081e58038a9215
https://docs.openstack.org/nova/latest/admin/pci-passthrough.html
https://docs.openstack.org/nova/latest/admin/virtual-gpu.html (vGPU only)
Tesla models in OpenStack: https://egallen.com/openstack-nvidia-tesla-gpu-passthrough/
https://wiki.archlinux.org/index.php/PCI_passthrough_via_OVMF